,

Sistema Masa-Resorte-Amortiguador (Rotacional)- Ejercicios Resueltos – Catálogo 3

15,00 

En esta guía PDF  se determina la Función de Transferencia de los ejercicios que más se utilizan en las clases de sistemas masa-resorte-amortiguador rotacional.

En esta guía PDF  se determina la Función de Transferencia de los ejercicios que más se utilizan en las clases de sistemas masa-resorte-amortiguador rotacional que forman parte de la cátedra de sistemas de control, señales y sistemas, análisis de redes eléctricas con motor DC, sistemas electrónicos en mecatrónica, etc. En total son 10 ejercicios completamente resueltos que involucran el uso de herramientas como álgebra de bloques, Matlab, transformada de Laplace, variables de estado, etc.

Es un artículo digital, entregado por email (dademuch@gmail.com) o WhatsApp (+34747458738) una vez recibido el pago.

A continuación, los enunciados de problemas resueltos en esta guía.

1. Hallar la función de transferencia Θ(s)/T(s) del Sistema mostrado en la Figura 22.

null

2. Hallar la función de transferencia Θ(s)/T(s) del Sistema mostrado en la Figura 23.

null

3. Hallar las funciones de transferencia Θ1(s)/T(s)  y Θ2(s)/T(s)  del Sistema mostrado en la Figura 24.

null

4. Hallar la representación en espacios de estados del Sistema del ejercicio anterior, Figura 24, considerando a Θ1(t) como la salida y a T(t) como la entrada. Hallar el diagrama de bloques del sistema y a partir de allí la función de transferencia Θ1(s)/T(s).

5. Hallar la función de transferencia ΘL(s)/Tm(s)  del Sistema Motor-Eje Flexible-Carga mostrado en la Figura 26.

null

6. Hallar las funciones de transferencia Θ1(s)/Tm(s) y Θ2(s)/Tm(s)  del Sistema mostrado en la Figura 27.

null

7. Hallar las funciones de transferencia Θ1(s)/T(s) y Θ2(s)/T(s)  del Sistema mostrado en la Figura 28.

null

8. Hallar la función de transferencia Θ2(s)/T(s) del Sistema mostrado en la Figura 29.

null

9. Hallar las funciones de transferencia Θ1(s)/T(s) y Θ2(s)/T(s)  del Sistema mostrado en la Figura 30. Considerar k1=9, k2=3 N-m/rad, b1=8, b2=1 N-m-s/rad, J1=5, J2=3 Kg-m2.

null

10. Hallar la representación en espacios de estados del Sistema del ejercicio anterior, Figura 30, considerando a Θ2(t) como la salida y a T(t) como la entrada. Hallar la función de transferencia Θ2(s)/T(s), directamente desde la representación en variables de estado obtenida. Considerar k1=9, k2=3 N-m/rad, b1=8, b2=1 N-m-s/rad, J1=5, J2=3 Kg-m2.

11. Hallar la representación en espacios de estados del Sistema mostrado en la Figura 32, considerando a Θ2(t) como la salida y a T(t) como la entrada. Utilizando Matlab, hallar la función de transferencia Θ2(s)/T(s) directamente a partir de la representación en variables de estado obtenida. Considerar k1= k2=1 N-m/rad, b1= b2=1 N-m/rad, J=1 Kg-m2.

null

12. Hallar Las funciones de transferencia Θ1(s)/Tm(s) y Θ2(s)/Tm(s)  del Sistema mostrado en la Figura 33.

null

error: Content is protected !!
Scroll al inicio